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Particles are today the main tool to study superfluid turbulence and visualize quantum
vortices. In this Rapid Communication, we study the dynamics and the spatial distribution
of particles in coflow and counterflow superfluid helium turbulence in the framework
of the two-fluid Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model. We perform three-
dimensional numerical simulations of the HVBK equations along with the particle dynam-
ics that depends on the motion of both fluid components. We find that, at low temperatures,
where the superfluid mass fraction dominates, particles strongly cluster in vortex filaments
regardless of their physical properties. At higher temperatures, as viscous drag becomes
important and the two components become tightly coupled, the clustering dynamics in
the coflowing case approach those found in classical turbulence, while under strong
counterflow, the particle distribution is dominated by the quasi-two-dimensionalization of
the flow.

DOI: 10.1103/PhysRevFluids.5.032601

I. INTRODUCTION

Turbulence has fascinated physicists and mathematicians for centuries, and is one of the oldest
yet still unsolved problems in physics. In a turbulent fluid, energy injected at large scales is
transferred towards small scales in a cascade process [1]. At small scales, a turbulent fluid develops
strong velocity gradients resulting in the appearance of vortex filaments [2]. Such vortices have
an important counterpart in turbulent quantum fluids, such as superfluid helium and Bose-Einstein
condensates (BECs) made of dilute alkali gases.

At finite temperatures, a quantum fluid consists of two immiscible components: a superfluid
with no viscosity, and a normal fluid described by the Navier-Stokes equations. In the case where
the mean relative velocity of these two components is nonzero, the two-fluid description leads
to a turbulent state with no classical analogy known as counterflow turbulence [3]. Such an
out-of-equilibrium state is typically produced by imposing a temperature gradient in a channel [4,5].
Another defining property of superfluids is that the circulation around the vortices is quantized. Such
objects, known as quantum vortices, have been the subject of extensive experimental studies since
the early discovery of superfluidity. Rectilinear quantum vortices were first photographed at the
intersection with helium-free surfaces in 1979 [6]. There has been renewed interest since 2006, when
they were first visualized in superfluid helium using hydrogen particles [7]. Further progress on par-
ticle tracking methods has enabled the observation of quantum vortex reconnections [8] and Kelvin
waves [9], as well as unveiling the differences between classical and quantum turbulence [10,11].

Particles have been also actively used to study vortex dynamics in classical fluids [12]. Particle
inertia generally leads to a nonuniform spatial distribution of particles in turbulent flows [13]. Light
particles such as bubbles in water become trapped in vortices allowing their visualization [14], while
heavy particles tend to escape from them [15]. In quantum turbulence, the situation is more complex
since particles interact with both components of the superfluid [16]. At low temperatures where the
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normal fluid fraction is negligible, the particle dynamics is dominated by pressure gradients leading
to their trapping by quantum vortices [3,17,18]. As temperature increases, particles additionally
experience a viscous Stokes drag from the normal component.

There exist different models to describe superfluid turbulence. At very low temperatures, the
Gross-Pitaevskii equation describes well a weakly interacting BEC, and is expected to provide a
qualitative description of superfluid helium. In this model, vortices are by construction topological
defects and their circulation is therefore quantized. The Gross-Pitaevskii equation has been
generalized to include the dynamics of classical particles [19,20], and has been used to study
particle trapping by quantum vortices [18] and the particle-vortex interaction once particles are
trapped [21]. A second approach is the vortex filament method, where each vortex line advects
each other through Biot-Savart integrals [22]. This method has also been adapted to describe
the interaction of particles and vortices [16,17]. Finally, a third kind of model is given by the
coarse-grained Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equations [3]. This approach is well
adapted to describe the large-scale motion of a turbulent superfluid at finite temperature, although
the quantum nature of the vortices is lost. In particular, it has been recently used to study coflow and
counterflow turbulence [23,24].

Liquid-helium experiments commonly use solid hydrogen or deuterium particles with typical
diameters of a few microns [25,26]. Although such particles are much larger than the vortex core
size a0 ≈ 1 Å, it is expected that they do not disturb much the large scales of the superfluid. In this
Rapid Communication, we investigate the dynamics of particles in three-dimensional coflow and
counterflow quantum turbulence by performing direct numerical simulations of the HVBK model.
In particular, we study how well particles sample the different regions of the flow and how they
cluster on vortices depending on their physical properties.

II. GOVERNING EQUATIONS

A. Coarse-grained HVBK model

We consider the dynamics of turbulent superfluid helium at finite temperature driven by the
HVBK equations, describing the flow at scales larger than the mean distance between vortices.
At these scales, the quantum vortex dynamics can be approximated by a coarse-grained superfluid
velocity field us, which interacts with the viscous normal component un via two coupled Navier-
Stokes equations,

∂un

∂t
+ un · ∇un = − 1

ρn
∇pn + νn∇2un − ρs

ρn
f ns + �n, (1)

∂us

∂t
+ us · ∇us = − 1

ρs
∇ps + νs∇2us + f ns + �s, (2)

∇ · un = ∇ · us = 0, f ns = α�0(un − us). (3)

The total density of the fluid is ρ = ρn + ρs. The normal fluid viscosity νn is related to the helium
dynamic viscosity μ by νn = μ/ρn. The two fluids are coupled through the mutual friction force
f ns that originates from the scattering of the excitations constituting the normal fluid component
on quantum vortices. To be included in the HVBK dynamics, this microscopic process has to be
averaged on the relevant scales (for a detailed discussion, see Ref. [24]). A number of models have
been proposed to estimate this characteristic timescale for the HVBK description. In general, it
is proportional to the temperature-dependent mutual friction coefficient α [see Fig. 1(a)] and to a
characteristic superfluid vorticity �0. The frequency �0 is in principle proportional to the vortex
line density and to the quantum of circulation. As in Ref. [23], we estimate it as �2

0 = 〈|ωs|2〉/2,
where ωs = ∇ × us is the superfluid vorticity, and 〈·〉 denotes a space average. When there is a very
strong counterflow, this superfluid vorticity-based estimate may underestimate the mutual friction
frequency. In this case, one can instead take �0 as an external control parameter depending on the
particular flow [27].
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(a) (b)

FIG. 1. (a) Temperature-dependent properties of superfluid 4He. Mutual friction coefficient α from [30],
density ratio ρs/ρn, and viscosity ratio νs/νn. (b) Dependence of Stokes numbers St = τp/τ

(n)
η on temperature.

Stokes numbers are estimated for spherical solid hydrogen particles (ρp/ρ ≈ 0.6 [11]) with diameters ranging
from 2 to 10 μm, using τ (n)

η = (ρ/ρn)1/2 τ exp
η and τ exp

η = 0.1 ms [31].

The two velocity fields are stirred by independent large-scale Gaussian random forces �s(x)
and �n(x) of unit variance. In the present formulation, a mean counterflow velocity Uns = 〈un〉 −
〈us〉 may be optionally imposed by setting the average forces to 〈�s〉 = −α�0Uns and 〈�n〉 =
(ρs/ρn)α�0Uns. In Eq. (2), the effective superfluid viscosity νs models the small-scale physics not
resolved by the HVBK equations, including energy dissipation due to quantum vortex reconnections
and Kelvin wave excitation. The values of the effective viscosity are taken from the model described
in Refs. [28,29]. The viscosity ratio νs/νn resulting from this model is shown in Fig. 1(a).

B. Inertial particles in the HVBK model

Particles in superfluid helium experience a Stokes drag associated with the viscosity of the
normal fluid, while also feeling the pressure gradient force from both fluid components. Particles
are considered to be much smaller than the Kolmogorov scales of the flow. Hence finite-size effects
can be neglected, as well as the action of particles on the flow, since any disturbance of the flow
is immediately damped. The Basset history term is also neglected. The equations governing the
particle dynamics then read [16,32]

dvp

dt
= 1

τp
(un(xp) − vp) + β

(
ρn

ρ

Dun

Dt
+ ρs

ρ

Dus

Dt

)
, (4)

τp = a2
p

3βν
, β = 3ρ

2ρp + ρ
, (5)

where ρp is the particle density and ap its radius, and D/Dt are the corresponding material
derivatives. The density parameter β accounts for added mass effects, while the Stokes time τp

represents the particle response time to normal fluid fluctuations. In the definition of τp, ν is the
kinematic viscosity of helium, defined as ν = μ/ρ = (ρn/ρ)νn. Note that, even though there is a
viscous term in Eq. (2), there is no Stokes drag resulting from the superfluid component. Particles
moving at velocities close to the speed of sound could in principle trigger vortex nucleations, which
would result in an additional effective drag. Here, we neglect such small-scale effects.

The superfluid pressure gradient term in Eq. (4), proportional to Dus/Dt , is responsible for
particle attraction towards superfluid vortices. Note that the present model does not explicitly
account for particles that become trapped by quantum vortices, whose behavior is expected to be
different from that of untrapped particles. For instance, in thermal counterflow experiments, trapped
particles move towards the heat source along with the superfluid flow, while untrapped ones are
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transported away from it by the normal component [33]. With regard to the spatial distribution of
particles, one can expect that accounting for trapping would further increase the concentration of
particles in superfluid vortices compared to the present model.

The Stokes number St = τp/τ
(n)
η quantifies the particle inertia. Here, the Kolmogorov timescale

associated with the normal component is τ (n)
η = (νn/εn)1/2, where εn is the mean energy dissipation

rate of the normal fluid. In the limit St → 0, particles behave as perfect tracers of the normal
component. In the opposite limit St → ∞, the particle motion is ballistic and not modified
by turbulent fluctuations. The Stokes numbers of micrometer-sized hydrogen particles based on
dissipation measurements in the Superfluid High REynolds von Kármán experiment (SHREK)
[31] are estimated in Fig. 1(b). Remarkably, the temperature dependence of St for fixed particle
parameters (ap, ρp) is nonmonotonic due to the variation of helium properties with temperature,
and presents a maximum value at T ≈ 2.04 K.

As noted above, the present model is valid in the limit of small particle size compared to the
Kolmogorov scale of the normal fluid. In addition, particles should be in principle smaller than
the mean intervortex distance, so that they do not interact strongly with quantized vortices, and
do not get often trapped by them [32]. Consistently with the HVBK approach, which does not
explicitly account for quantized vortex dynamics, Eq. (4) should be interpreted as describing the
coarse-grained particle dynamics, neglecting the physics at smaller scales. Whether such small-scale
phenomena have an impact on the coarse-grained particle dynamics is a challenging question that
can only be answered by confronting this model to new experimental results. Note that, in recent
superfluid 4He experiments, the intervortex distance is of order 10 μm [5,31,34], comparable both
to the Kolmogorov scales and to the typical size of hydrogen particles in experiments.

C. Numerical procedure

We investigate the spatial distribution of inertial particles in superfluid 4He by numeri-
cally solving the HVBK equations (1)–(3) in a triply periodic box using a parallel pseu-
dospectral code (see Ref. [35] for details). Point particles are randomly initialized in the do-
main, and their trajectories are evolved in time until the system reaches a statistically steady
state. The time advancement of both particles and fields is performed using a third-order
Runge-Kutta scheme. Fluid fields are interpolated at particle positions using fourth-order B
splines [36].

Simulations are performed at temperatures T = 1.3, 1.9, and 2.1 K. Navier-Stokes simulations
are also performed for comparison with the classical turbulence case. The number of collocation
points in each direction is either N = 256 or 512. Both resolutions only differ on the numerical
value of the viscosities νn and νs and on the resulting Reynolds numbers, but the νs/νn ratio is kept
the same. The Reynolds numbers associated with the normal and superfluid components are defined
as Reα = u(α)

rms/(ναk0), where α = {n, s}, u(α)
rms is the root mean square of the velocity fluctuations,

and 1/k0 = 1 is the scale of the external forcing. Reynolds numbers are fixed by the resolution,
as the smallest scales of the most turbulent component have to be well resolved. For each run, Np

particles of a given class are tracked, with each class being defined by a set of parameters (ap, ρp).
Simulation parameters are summarized in Table I.

Two counterflow simulations (runs IV and V in Table I) are performed at the temperature T =
1.9 K at which the two fluid components have comparable properties. The two runs differ on the
effective mutual friction force: While the first run uses the same estimate �2

0 = 〈|ωs|2〉/2 as in
the coflow runs, the second one takes �0 as an external control parameter with a value four times
larger than steady value of the first run. The values of �0, normalized by k0u(n)

rms, are also displayed
in Table I. Note that, effectively, the coupling between the two fluid components is stronger for
run V than run IV. As discussed in Sec. II A, this is to account for a likely underestimation of the
mutual friction intensity by the superfluid vorticity-based estimate. This also allows us to clarify the
effect of the mutual friction on particle concentration statistics. In both cases, the imposed mean
counterflow velocity is Uns/u(n)

rms ≈ 5.
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TABLE I. Simulation parameters. NS denotes Navier-Stokes simulations. (See text for definitions.)

Run T (K) Uns/u(n)
rms N α �0/(k0u(n)

rms) ρs/ρ ρn/ρ νs/νn Ren Res Np/106

I 1.3 0.0 256 0.034 8.7 0.952 0.048 0.043 28 707 2.0
II 0.0 512 14.2 59 1479 3.2
III 1.9 0.0 256 0.206 7.9 0.574 0.426 1.25 632 516 2.0
IV 4.3 256 2.3 592 426 0.4
V 5.6 256 11.2 447 386 0.4
VI 0.0 512 11.2 1299 1053 3.2
VII 2.1 0.0 256 0.481 7.4 0.259 0.741 2.5 695 268 0.4
VIII 0.0 512 9.8 1332 515 3.2
IX NS 0.0 256 0.0 0.0 1.0 780 0.4
X 0.0 512 1639 3.2

III. SPATIAL DISTRIBUTION OF PARTICLES

To illustrate the effect of temperature on particle clustering, we show in Fig. 2 the instantaneous
particle distribution obtained from different simulations. Particle parameters are St = 1 and ρp/ρ =
0.7, comparable to those typically found in experiments [see Fig. 1(b)]. In turbulent coflow at
T = 1.3 K [Fig. 2(a)], particles form quasi-one-dimensional clusters that are often aligned with
superfluid vortex filaments. At higher temperatures [T = 1.9 K, Fig. 2(b)], the particle distribution
is more uniform, although regions of high particle concentration are still clearly visible. When a
mean counterflow is imposed at the same temperature [Figs. 2(c) and 2(d)], the particle distribution
is dominated by the formation of large-scale vortices elongated along the counterflow direction.
For the chosen set of parameters, particles tend to escape from such vortices and concentrate in
large-scale structures.

Particles in classical turbulence are known to form fractal clusters at distances smaller than the
dissipative scale of the flow [37]. A measure of fractal clustering is the correlation dimension D2

[38,39], estimated as the small-scale power law scaling of the probability P2(r) of finding two
particles at a distance smaller than r [i.e., P2(r) ∼ rD2 for r small]. In three dimensions, D2 = 3
indicates that particles are uniformly distributed in space, while smaller values are evidence of
fractal clustering.

We first consider particles of relative density ρp/ρ = 0.7 at varying particle radius ap. The
separation probability P2(r) for different Stokes numbers is shown in Fig. 3(a) for the 1.3 K
cases. At small scales, the curves present a clear power-law scaling, with an exponent D2 that
varies significantly with St. At this temperature, particle clustering is maximal for St ≈ 0.4, which

(a) (b) (c) (d)

FIG. 2. Quasi-two-dimensional slices of the instantaneous particle distribution for St = 1 and ρp/ρ = 0.7
(β = 1.25). (a) T = 1.3 K coflow, run I; (b) T = 1.9 K coflow, run III; (c), (d) T = 1.9 K counterflow, run IV.
In (c), the counterflow direction is normal to the figure. In (d), the counterflow is directed along the horizontal
axis. Colors represent regions of high superfluid vorticity.
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(a) (b)

FIG. 3. Particle concentration at constant density ρp/ρ = 0.7 (β = 1.25). (a) Separation probability P2(r)
for T = 1.3 K (run II) and for different Stokes numbers. Distances are normalized by the normal component
Kolmogorov length scale η(n) = (ν3

n/εn)1/4. (b) Correlation dimension D2 as a function of Stokes number for
all runs. Different markers represent different cases. CF: Counterflow turbulence (run IV). CF*: Counterflow
turbulence with strong mutual friction (run V). NS: Classical turbulence (runs IX, X).

would roughly correspond to 6-μm-diam hydrogen particles in SHREK [Fig. 1(b)] or in the Prague
oscillating grid experiments [40].

We plot in Fig. 3(b) the correlation dimension D2 from all runs. As in classical turbulence
[15], for all temperatures particle clustering is maximal at Stokes numbers of order unity. At
temperatures close to Tλ, the minimum value of D2 is close to 2.3, comparable to the case of heavy
particles in turbulence [41]. In particular, both counterflow cases at T = 1.9 K display a maximum
clustering at St ≈ 1, similarly to the coflow runs at the same temperature. The two counterflow
curves nearly collapse, suggesting that there is no significant effect of the mutual friction intensity
on D2. As anticipated from Fig. 2, particle clustering changes dramatically in turbulent coflow at
lower temperatures. At T = 1.3 K, the minimum value of D2 decreases to 0.75, indicating that
particles become concentrated in wormlike structures such as those seen in Fig. 2(a).

To understand the above observations, we consider the particle equation of motion in the small
Stokes number limit (τp 	 τ (n)

η ). In this case, particles follow an effective compressible velocity
field veff(x, t ) [13,42]. From Eq. (4), this field writes veff ≈ un + τp(β ρn

ρ
− 1) Dun

Dt + τp β
ρs

ρ
Dus
Dt .

Taking its divergence, one finds

1

τp
∇ · veff ≈

(
β

ρn

ρ
− 1

)(
S2

n − �2
n

) + β
ρs

ρ

(
S2

s − �2
s

)
, (6)

where Ss, Sn, �s, and �n are the norms of the strain-rate and rotation-rate tensors of the two fluids.
In the classical limit where ρs = 0, Eq. (6) indicates that light particles (β > 1) tend to concen-

trate in vorticity-dominated regions (where �n > Sn), while heavy particles (β < 1) accumulate
in strain-dominated regions [43]. For neutral particles (β = 1), the effective velocity field is
incompressible and no preferential concentration is expected.

The classical picture changes in low-temperature 4He when ρs 
 ρn. In this case, Eq. (6)
becomes τp

−1∇ · veff ≈ −(S2
n − �2

n) + β(S2
s − �2

s ), implying that the remaining normal component
acts on the particle dynamics only through the Stokes drag. Due to its higher viscosity, the normal
velocity field is smoother (has weaker gradients), hence in general |S2

s − �2
s | 
 |S2

n − �2
n|. As a

consequence, for β of order unity, the superfluid term dominates, and thus particles cluster in regions
of high superfluid vorticity. We stress that this behavior is unique to quantum turbulence, since the
absence of superfluid drag on the particles implies that there is no force counteracting the dominant
effect of the superfluid pressure gradient.
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(a) (b)

FIG. 4. Clustering as a function of particle density for St = 1. (a) Correlation dimension D2. (b) Relative
enstrophy sampled by the particles Wp

α/Wα for α = n, s. Solid lines, normal fluid enstrophy; dotted lines,
superfluid enstrophy.

In the opposite limit T → Tλ, the superfluid fraction vanishes and the classical behavior
discussed above is recovered. More interesting is the intermediate case where the two fluid densities
and viscosities are similar, at T ≈ 1.9 K. In this case, in the absence of a mean counterflow, the
two velocity fields are tightly coupled even at the smallest flow scales [23]. Hence, Sn ≈ Ss and
�n ≈ �s, and the clustering behavior predicted by Eq. (6) falls back to the classical case. This does
not apply in the counterflow case, where the normal and superfluid motions are decorrelated at the
small scales along the counterflow direction [24].

To support the above predictions and to extend our results to different particle densities, Fig. 4(a)
shows D2 as a function of the density parameter β, for St = 1. In the classical case, heavy
particles concentrate in planar structures (D2 � 2) while light particles form localized linear clusters
(D2 � 1), consistently with previous findings [44]. For neutral particles, D2 strongly decreases at
the lowest temperature, suggesting the formation of linear clusters. The above discussion suggests
that these clusters form in high superfluid vorticity regions. This is verified in Fig. 4(b), where the
relative enstrophy sampled by the particles Wp

α/Wα (with α = n, s) is plotted. Here, Wα = 〈|ωα|2〉
is the enstrophy of a given fluid component (Eulerian average), and Wp

α = 〈|ωα (xp)|2〉 where the
average is over particle positions. For T = 1.3 K, neutral and light particles preferentially sample
high superfluid vorticity regions.

We finally discuss the counterflow case. Contrarily to classical and coflowing 3D turbulence,
here the two-fluid motion is characterized by large-scale vortices elongated along the counterflow
direction and quasi-two-dimensionalization of the flow [as seen in Figs. 2(c) and 2(d)], while
the small scales are strongly damped due to mutual friction [24]. In contrast with the coflowing
case, where the results are strongly dependent on the density parameter β, here particles form
clusters of dimension D2 ≈ 2 almost regardless of their density [Fig. 4(a)]. This is explained by
particles concentrating in sheetlike structures as a result of the two-dimensionalization of the flow.
The observed particle organization may explain why quantum vortices are not clearly visualized
by particles in some counterflow experiments [45]. Except for the case of very light particles,
the mutual friction intensity has virtually no influence on D2, consistently with the observations
from Fig. 3(b). This is, however, not the case for the relative enstrophy sampled by the particles
[Fig. 4(b)], which displays a striking variation with the mutual friction frequency �0. In the low �0

case, light particles tend to cluster in regions of very high normal fluid vorticity, while this is not the
case when �0 is increased. This is a consequence of the change of Eulerian fields with the mutual
friction intensity. A strong mutual friction results in weaker enstrophy fluctuations in the flow (data
not shown). Furthermore, mutual friction suppresses the velocity fluctuations in the counterflow
direction [27], enhancing the two-dimensionalization of the flow and thus the formation of vortex
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sheets that drive particle clustering. This finally explains why the correlation dimension D2 remains
close to two when the mutual friction frequency is increased.

IV. SUMMARY

We have studied the spatial organization of inertial particles in the HVBK framework for
superfluid helium. In the absence of a mean counterflow, the most striking difference with classical
fluids is observed at low temperatures when the superfluid mass fraction is dominant. In this case,
particles are attracted towards high superfluid vorticity regions regardless of their density relative to
the fluid, thus forming quasi-one-dimensional clusters. This attraction is explained by the dominant
effect of the superfluid pressure gradient on the particles. At higher temperatures, as the two
fluid components become strongly coupled by mutual friction, the classical turbulence behavior is
recovered. Namely, light particles concentrate in vortex filaments, while heavy particles are expelled
from them. Finally, in the presence of a strong counterflow, the clustering dynamics is governed by
the two-dimensionalization of the velocity fields and the formation of large-scale vortex columns
or sheets, which either attract or repel particles as a function of the particle density and/or inertia.
In this case, particles cluster in quasi-2D structures almost regardless of their density and of the
imposed mutual friction intensity.
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